Native nucleic acid electrophoresis as an efficient alternative for genotyping method of influenza virus.
نویسندگان
چکیده
Influenza viruses are the worldwide major causative agents of human and animal acute respiratory infections. Some of the influenza subtypes have caused epidemics and pandemics among humans. The varieties of methods are available for the rapid isolation and identification of influenza viruses in clinical and environmental samples. Since nucleic acids amplification techniques such as RT-PCR have been adapted, fast and sensitive influenza type and subtype determination is possible. However, in some ambiguous cases other, more detailed assay might be desired. The genetic material of influenza virus is highly unstable and constantly mutates. It is known that single nucleotide polymorphisms (SNPs) results in resistance to commercially available anti-viral drugs. The genetic drift of the virus could also result in weakening of immune response to infection. Finally, in a substantial number of patients co-infection with various virus strains or types has been confirmed. Although the detection of co-infection or presence of minor genetic variants within flu-infected patients is not a routine procedure, a rapid and wide spectrum diagnostics of influenza virus infections could reveal an accurate picture of the disease and more importantly, is crucial for choosing the appropriate therapeutics and virus monitoring. Herein we present the evidences that native gel electrophoresis and MSSCP--a method based on multitemperature single strand conformation polymorphism could furnish a useful technique for minor variants, which escape discovery by conventional diagnostic assays.
منابع مشابه
Development and Evaluation of Real-Time Reverse Transcription Polymerase Chain Reaction Test for Quantitative and Qualitative Recognition of H5 Subtype of Avian Influenza Viruses
Avian influenza viruses (AIV) affect a wide range of birds and mammals, cause severe economic damage to the poultry industry, and pose a serious threat to humans. Highly pathogenic avian influenza viruses (HPAI) H5N1 were first identified in Southeast Asia in 1996 and spread to four continents over the following years. The viruses have caused high mortality in chickens and various bird species ...
متن کاملEvaluating the Immunogenicity of Avian Influenza Virus Nucleoprotein
Background: Influenza viruses cause Avian Influenza (AI) is a serious infectious disease belonging to type A Orthomyxovirus. A viral RNA synthesis is due to an interaction of the nucleoprotein (NP) with the viral polymerase. In the present study, we have evaluated the immunogenicity of avian influenza virus nucleoprotein. Materials & Methods: An Influenza Virus N9H2 subtype A/Chicken I...
متن کاملDetermination of Oseltamivir Resistance Level by an H275Y Genotyping Assay among Influenza A (H1N1) Viruses in Hamadan Province, Iran
Introduction: Epidemics and deaths caused by influenza viruses are an important concern worldwide. The use of neuraminidase inhibitors such as oseltamivir is an effective and valuable way to treat the diseases caused by these viruses. However, the mutation in several parts of the gene leads to the emergence of drug-resistant strains, and an ever-increasing rise in drug-resistant strains is a gl...
متن کاملOptimization of the Analysis of Almond DNA Simple Sequence Repeats (SSRs) Through Submarine Electrophoresis Using Different Agaroses and Staining Protocols
Simple sequence repeat (SSR markers or microsatellites), based on the specific PCR amplification of DNA sequences, are becoming the markers of choice for molecular characterization of a wide range of plants because of their high polymorphism, abundance, and codominant inheritance. Different methods have been used for the analysis of the SSR amplified fragments being submarine agarose electropho...
متن کاملConstruction of Influenza A/H1N1 Virosomal Nanobioparticles
Background and Aims: Influenza is one of the main respiratory infections of humans, responsible for 300,000–500,000 annual deaths world-wide. Vaccination is one of the best ways to prevent infections including influenza. Influenza virosomes are virus-like particles, which retain the cell binding and membrane fusion properties of the native virus, but lack the ribonucleoprotein (RNP). A vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica Polonica
دوره 61 3 شماره
صفحات -
تاریخ انتشار 2014